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1. Introduction

In this study we consider the solution of symmetric linear systems of equations arising from appli-
cations of the finite element method using Krylov based algorithms (e.g. Lanczos and conjugate gradient
procedures). The Lanczos algorithm [ 1] was first introduced in 1950 as a method for computing eigenvalues
and the corresponding eigenvectors of a matrix. In 1952 Hestenes and Stiefel [2] introduced the method of
conjugate gradients (CG) for solving linear systems of equations. In the same year, Lanczos showed that
his algorithm then called the method of minimized iteration [3], can also be used to obtain the solution of
a linear system of equations. In fact, these methods are closely related in the sense that in exact arithmetic
(when no roundoff errors are present) they compute the same approximate solution at each step. A fact
known to both Lanczos and Hestenes.

An important motivating factor for using Lanczos and CG methods is the theoretical result showing
that in exact arithmetic both methods are able to compute the solution in less than n iterations, where 7 is
the number of equations in the system. In fact the number of iterations will be less than the total number of
distinct eigenvalues in the system. In 1960, the CG method was first used to solve system of linear equations
arising in structural mechanics [4]. In this paper, Lively showed that CG was not effective for solving the ill-
conditioned systems that often arise in structural analysis. The popularity of the CG method vanished when
it was found that for certain problems it required well over n steps to converge to the correct solution. CG
was then abandoned and the more effective direct methods based on triangular factorization of the matrix
were adopted by structural analysts as their method of choice.

Nonlinear transient finite element problems may be characterized by the equations of dynamic equilib-
rium

Mw + Fint(w) = £ 221 (¢) (1)

where M is the mass matrix, f*"* is the vector of intemal resisting forces due to the displacements w, and
f <= is the time dependent external force vector [S]. The above system is generally solved by applying a
step-by-step time integration procedure resulting in a system of nonlinear algebraic equations. The solution
to this system is obtained using a Newton-Raphson iteration or related schemes. At the heart of this iteration
is a set of linear equations

Ax=b (2)

where x is the correction to the approximate solution vector in the nonlinear iteration loop. A is sym-
metric, positive definite and sparse and is related to the system in (1) through

A=M+K8

int
where K = %w— and & is a scaler parameter that depends on the time step (e.g. 8 = $A¢?). For
problems with small bandwidth or problems which result in small fill-in in the triangular factorization of
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A, direct methods are the fastest solvers [6]. When the bandwidth of A is large (e.g. large complex two
and three dimensional problems), the solution of the linear system may be a formidable task and alternative
procedures must be considered.

In 1971 the advantages of Lanczos and CG methods were recognized when attention was focused on
linear systems with large sparse matrix coefficients, see [7]. An important property of these methods is that,
at each step, the solution to (2) can be obtained with out an explicit knowledge of the matrix. Only a means of
computing the matrix vector product Av for a given vector v is required. This is an elegant way of exploiting
the sparsity structure of A. Typically, in finite element analysis there are fewer than 100 nonzero terms in
each row of A. The number of nonzero terms in A is independent of the number of equations. It depends on
the number of nodes per element, the number of parameters per node, and the number of elements attached
to a node. The number of equations in this system depends on the complexity of the structure (i.e. the
domain) and also on the amount of detail desired in describing the solution.

Preconditioning is introduced to alleviated the difficulties associated with the slow convergence of
Lanczos and CG methods. Instead of solving (2) one solves

AB_ly= b (4)

where x = B~'y. B is referred to as the preconditioning matrix. The advantages of preconditioning can
also be realized by solving B-'Ax = B~'b. The number of iterations required to solve (4) depends on
the condition number, x, of its coefficient matrix. x(AB~!) is the ratio of the largest eigenvalue of the
eigenproblem [A — ABJz = 0 to its the smallest (i.e X = [AB~![{ [BA~!|[). Theoretical considerations
suggest that at the end of each of the first few iterations of both Lanczos and CG methods the residual norm

V X(AB™*) 1
is reduced by a factor of

; ; x(AB~')+1
equation. Of course x is one only when B = A! However, this provides us with a guideline for choosing B.
B must be chosen such that one can easily compute the solution of a linear system of equations with B as
its matrix coefficient while at the same time it is as close to A as possible. For non-trivial matrices A, these
are contradictory requirements which makes the problem of finding good preconditioners a challenging one.
For a well chosen B only a few iterations is required to reduce the residual norm to the desired level. It is
important to note that the condition number of AB~! depends on the time step through 8 in equation (3) as
the following example demonstrates.

. Note that when x is unity a single iteration is sufficient to solve the

Example 1:

14§ -1] _[1 0]
LetK = [ 1+¢ and M = 0 1.'I‘hen

1+(1+C -8
A= [ +(1+0)8




The eigenvalues of the preconditioned system satisfies the quadratic equation det[A — AB] = 0. There is no
change in the condition number for this problem with diagonal preconditioning since the diagonal of A is a
scalar multiple of the identity matrix. Then the condition number for this problem becomes

o Lt (2+ )
T 1488
For a sufficiently small time step the condition number is close to unity. On the other hand as the time step
increases the condition number approaches 1 4 % which may be arbitrarily large for small {.

This example demonstrates that; (a) the performance of iterative methods for solving linear systems
of equations arising from transient finite element problems depends strongly on the time step, and (b) for
a given finite element discreatization static problems result in worse conditioned system of equations than
transient problems. These facts should be considered when assessing the performance of iterative methods.

Here, we focus on systems which arise from the application of the finite element method to engineering
problems whose sparsity structure may be characterized by | .

A=Y N.aN 5)

where N, is long and thin Boolean connectivity matrix and a, denotes the small stiffness matrix for clement
e. We can take advantage of this structure of A when using either CG or Lanczos methods to solve (2). In
[8] and [9], it is pointed out that the matrix vector product

Au = Z(N,aeNfu) (6)

can be computed without ever assembling A. The evaluation of Au using (6) requires more arithmetic
operations than that using an assembled A (assuming some compact structure where no zero entries of A
are stored). Typically, the number of arithmetic operations would increase by about three folds. However,
the use of parallel and vector computers produces only a modest increase in the elapsed time and in certain
cases might even reduce it.

In 1983, Hughes, Levit and Winget {10] proposed a time integration algorithm for the solution of heat
conduction equations that uses an element-by-element (E x E) splitting. In the same year, Ortiz, Pinsky and
Taylor [11] proposed a novel extension of the ExE procedure to the solution of dynamic equations. These
ExE time integration algorithms are unconditionally stable, but they lack accuracy which limits their use.
Hughes, Levit and Winget [12] reformulate the E x E procedure as an iterative solver to achieve the accuracy
and stability of standard finite element algorithms. In [13] Nour-Omid and Parlett addressed the problem
of preconditioning (2). The idea is to employ the methods for solving differential equations presented in
{10,11,12] as preconditioners. The resulting preconditioners use the element representation of A in (6), and
requires no globally assembled matrix. They are defined as the product of positive definite element matrices
obtained by applying a diagonal shift to the positive semi-definite element stiffness matrices. Winget and
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Hughes [14] further developed the ideas of element preconditioners and constructed a variation that replaces
the terms on the diagonals of the element matrices with the corresponding ones in the assembled matrix. This
modification also results in positive definite element matrices. A product algorithm similar to that in [11] is
then constructed using the Choleski factorization of these modified element matrices. It is worth noting that
these preconditioners, though computed element-by-element, are an approximate Choleski factorization of
A, see [15]. Our primary interest in element-by-clement preconditioning is in keeping storage requirements
down in the analysis of regular structures, but the advent of vector and parallel computing may make this
approach a fast one as well, especially in three dimensions.

In section 2 we briefly describe the Lanczos algorithm and present a derivation of the conjugate gra-
dient method from the Lanczos algorithm in section 3. We then tum to the problem of orthogonality loss
that affects both methods. As a remedy, we consider the approach of partial reorthogonalization proposed
by Simon [16]. The element preconditioners used in this study are described in section 5 together with a
discussion of some implementation issues. In section 6 we describe the S x S preconditioners and its relation

to ExE method. The results of numerical tests on two characteristically different problems are presented in
section 7.




2. Lanczos Algorithm

When used as a method for solving linear systems, the Lanczos process starts from a given initial
approximation to the solution, x,. Associated with x,, define the residual vector r, = b — Ax,. Unless a
good estimate to the desired solution is available, the best choice for x, is the zero vector. Thenr, = b.
Nommalizing r, gives the first Lanczos vector, q, . Implicitly, at the end of the first step the algorithm obtains
a Galerkin approximation to the solution of (2) from the one dimensional space witn q, as the base vector.
Associated with this approximation is a new residual vector. The nomalization of this residual results
in the second Lanczos vector, q,. Repeating the Galerkin process but using the two dimensional space,
span(q,,q, ), followed by the normalization of the residual one obtains q,.

At a typical step, j, the Lanczos algorithm computes a residual vector associated with a best approxi-
mation, X;, (in a Galerkin sense) to x from the j dimensional space, span(q,,q,, ..., q; ]- This space is often
referred to as the space of trial vectors. The next Lanczos vector, q; .. is the normalized residual b — Ax;.
This process is repeated until the norm of the current residual is small compared to the that of the starting
residual. The Galerkin method chooses the approximate solution x; by forcing the associated residual to
be orthogonal to the space of trial (Lanczos) vectors. The Lanczos method computes neither x; nor the
associated residual. Instead it computes, at step j, a j-vector s; that contains the weighting parameters for
constructing the Galerkin solution.

Altemnatively, Lanczos may be described as the Gram-Schmit orthogonalization process applied to the
Krylov space, [ry, AB~'r;, (AB~!)%ry,...,(AB~ ') ~'ry], associated with equation (4). The orthogonal-
ization is performed with respect to the B~! inner product. The result of this orthogonalization is the set
of Lanczos vectors [q,, g, -..,q;]. q;, is obtained by orthonormalizing (AB~ ' Y r, against the computed
Lanczos vectors. The same vector q; , , is obtained if AB™'q; is used instead of (AB~')’r,. It tumns out
that the components of AB~ lqj along the first j — 2 Lanczos vectors are zero and orthogonalization needs
to be performed only against q; and q; _,. The result is a vector r; in the same direction as the residual due
to the Galerkin approximation described above.

The algorithm can then be rewritten as the three term relation

Fj =Bj+lqj+l =AB—lqj - q;0; _qj—lﬁj (7)
where a; = qT B~'AB~'q; and r; is normalized with respect to the inverse of the preconditioner to obtain
q,,, with nomalizing factor B, , , = (r7B~'r;)%.

The j-th step of the Lanczos algorithm involves the calculation of o, B, ,, and g, , ,, in that order.
In addition to the storage needs for A and B, the algorithm requires storage for 5 vectors of length n; one
for each of the vectors, q;_,,q,.r;, p; = B~ lqj and p,_,. The total cost for one step of the algorithm
involves one solve with the preconditioner B as the coefficient matrix, a multiplication of A by a vector, two

inner products and four products of a scalar by a vector. A summary of the Lanczos algorithm is presented
in Table 1.




After m Lanczos steps all the quantities obtained from equation (7) can be arranged in a global matrix

- CO N Ve DT 8
oo e e e

Here 7 = (0,0,...,0,1), Q,, is an n x m matrix with columns q;, ¢ = 1,2,...,m, and T,, is the
tridiagonal matrix
(o P ]
Bz a, Ba

3

. B

B, om

The orthogonality property of the Lanczos vectors, Q7 B-'Q,, = I, where L, is the m x m identity
matrix, can be used in equation (8) to obtain

QB 'AB~'Q, =T, (10)

A Galerkin approximation to y in (4) can be constructed by taking a linear combination of the Lanczos
vectors. Accordingly,

Yo = Q. 8n (11)

where s,,, satisfies the tridiagonal system of equations
Tmsm = QLB 'ro = B e, ) (12)

The last equality is obtained using the fact that the starting vectorisro = , q,. e, is the first column of the
identity matrix. Equation (12) is a weak form of (4) and is obtained by first substituting the approximation
to y from (11) into equation {(4) to obtain the residual

g, = AB-'Q,s, - b (13)

Orthogonalizing g,, against Q,, with respect to the B~' inner product results in equation (12). g, is
simply related to r,,, through

g€, =ImOn (14)
where G, is the bottom element of s,,, . The norm of this residual, p,, = ||g,,. || = B,,, |0 ], can be used to
monitor the convergence. Once p,, is sufficiently small the Lanczos algorithm is terminated and the solution

is constructed using (11). The Lanczos vectors can be put on secondary storage as they are being generated.
There are two main reasons for keeping the Lanczos vectors.
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(a) They are used occasionally in subsequent steps to restore orthogonality (see the following section on
Loss of Orthogonality for more details).

(b) They can be recalled and used to construct the solution to a new right hand side [17). The algorithm in
Table 1 is particularly well suited for multiple right hand sides.

Given an approximate solution vector Xo:

(1) Set
(a) Fp = b- AxO!
® q,=0

() Solve Bp, =r,.
()] Bx = (PT"O)%'

(C) q, = Bl_ro

(2) forj=1,2,... repeat;

(¢) SolveBp; =r;
® Bj.n = (r}"B_lrj)% = (pfrl)%
(g) if residual norm is small then terminate the loop.

th) qj+1= ! r;

i+1

O P= ]f:i’j

(3) Solutionx = x, + B~'Q,. s,

Table 1. The Lanczos algorithm.




3. Conjugate Gradient Algorithm

In this section we give a derivation of the conjugate gradient algorithm directly from the Lanczos
process [18,19,20]. The conjugate gradient method can be viewed as a procedure that implicitly computes
the triangular factorization of T,,, through an update algorithm to combine the steps 2 and 3 of the Lanczos
algorithm given in table 1. Accordingly

T, = L,D,LT (15)
where D,, = diag[d,, 3,..., &,]and

o 1 1

-0, 1
L, = . (16)

. 1
! -0,_; 1

The components of T,,, L,,,, and D,,, are related through the following pair of equations.

8); =0 — (02__18);_1

B, (17)

O

These two equations completely define the algorithm for triangular factorization of T,,,. Next we define

@y =

z,=B"1'Q,L.7 (18)
An important property of Z,,, is that its columns are orthogonal with respect to A. To show this consider
ZTAZ, =L;!Q, B 'AB"!Q,L.T
=L:'T,L;”
=D,

The columns of Z,,, are said to be conjugate and the orthogonality condition of Z,,, with respect to A is
referred to as the conjugacy condition.

Multiplying both sides of equation (18) by L7 and using the bi-diagonal structure of L., to equate the
k-th column on either side of this equation, yields

7, -2, =B lq, (19)
Defining d, = B~'q, the above equation reduces to

2y =4y + 2,210 (20)

8




Due to the conjugacy property of Z,,, we are able to update the solution vector x; bv simply adding a
component of z; . Thus, using equation (4) we have

x; =By,
=B"'Q,T; 'B,e,
=B 'Q.L;TD;'L;'B,e
=Z,D;'L; ', e,

=Xi-1+ Y%

where v, is the k-th element of D,'L !B, e,. This way the residual vector can also be updated using the
update relation

B =81 — Nl (21)

and u; = Az,. v, is related to the component of D,, and L., through

=B 22
% =35, (22)

where p, is updated through
Pr = WPy, (23)

with p, = B,. The above equation is simply the forward reduction algorithm to compute L' B, e,.

Thus the OG method directly computes the triangular factors of T,, by updating the factors of T, _ ;.
The result is the algorithm in Table 2. It is important to note that T,,, is often indefinite when A is a sym-
metric indefinite matrix. In this case the conjugate gradient algorithm is not reliable since the triangular
factorization of T,, may be numerically unstable. This instability occurs when ever 8, is small. Note that
S, = z{ u,; is the denominator of the right hand side of (2b) in Table 2.

The CG algorithm generates a sequence of approximations, Xy, to the solution x with a corresponding
residual vector g, . The termination criterion can be chosen based on these quantities. In addition to storage
demands for A and B the algorithm requires storage for 4 vectors.

9




Given an approximate solution x, then:

(1) Set
@ g,=b-Ax,
® z =g
(c) SolveBd, =g,
@ p,=gjd

(2) fork=1,2,.. repeat;
(@ u, =Az
® v= g
© X=%X_i+YZ
@ & =8,V
(¢) SolveBd,,, =g,.
® Py =8 ey
(g) ifp, +1 S tol - p, then terminate the loop.
® o =5t
() zyy =diy + 02

Table 2. The Conjugate Gradient Algorithm

10




4. Loss of Orthogonality

In finite precision, cach computation introduces a small error and therefore the computed quantities
will differ from their exact counterparts. Our objective here is to state the effect of roundoff error on the
Lanczos process. For this purpose we denote by € the smallest number in the computer such that 1 + € > 1.
It is known as the unit roundoff error.

Although the tridiagonal relation, Eq. (8), is preserved to within roundoff, the B~! orthogonality prop-
erty of the Lanczos vectors completely breaks down after a certain number of steps depending on € and
the distribution of the eigenvalues of B! A [16,19]. The Lanczos vectors not only lose their orthogonality,
but may even become linearly dependent. This problem also effects the conjugate gradient method in the
form of loss of conjugacy. A direct consequence of this loss of orthogonality is delay in convergence to the
desired solution.

The loss of orthogonality can be viewed as the subsequent amplification of the errors introduced after
each computation. We let Q,, denote the computed Lanczos vectors and define the following matrix

H, =Q.B'Q, (24)

In exact arithmetic H,,, is the identity matrix. The off-diagonals of H,, will depend on &, the unit
roundoff error. Simon [16] found a recurrence relation that can be used to estimate the elements of a column
of H,, from the elements of T,, and the elements in the previous columns of H,,. This recursion can be
stated in vector form

B;s1his1 = T;_1h; —oyh; — Bih; (25)

where h;_;, h; and h; ., are vectors of length j — 1 containing the top j — 1 elementsof the j - 1, j,
and j + 1-th columns of (H,,, — L, ). Here, the bottom element of h; _, is €. The orthogonality state can be
monitored by updating h, , ; in the course of the Lanczos algorithm.

A number of preventive measures can be taken to maintain a certain level of orthogonality. Lanczos
was aware of the effects of roundoff on the algorithm when he presented his work. He proposed that the
newly computed vector, g, ., be explicitly orthogonalized against all the preceding vectors at the end of
each step. We will refer to this technique as *“full reorthogonalization™ method. It enforces orthogonality to
within roundoff (i.c. |qT B~ ‘qj | < ne, i # 7). In[16] Simon showed that the computed tridiagonal remains
accurate to within roundoff if the more relaxed orthogonality condition

la/B~'q;] < vne,i # j (26)

is enforced. We refer to this as the semi-orthogonality condition, and to procedures that adopt the weaker
condition as selective orthogonalization methods. Simon proposed to update h; . ; using (26) and monitor
the magnitude of its clements. Whenever any component of h; , , is greater than /€ then semi-orthogonality
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may be lost between g , , and some columns of Q; . At this step the appropriate Lanczos vectors are brought
in from secondary store and g;  , is orthogonalized against each of them. This operations must be carried
out in two successive steps 1o avoid propagation of the errors.

A variant of Simon'’s scheme is to restore orthogonality of q; and q; , . at the same time. In this way
no reorthogonalization of q, , , will be necessary, at the end of the next step. The number of operations for
this scheme is the same as that of the scheme above, but vectors are retrieved only once and therefore the
1/O overhead is halved.

The disadvantage of reorthogonalization is that additional storage is required to keep the Lanczos vec-
tor. If m steps are required to reduce the residual to the desired level then storage for m vectors of length
n is needed. The advantage is that reorthogonalization can significantly reduce the number of steps. This is
demonstrated by the numerical examples.
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S. Element by Element Preconditioning

The idea of using solution algorithms from discretized partial differential equations for constructing
preconditioners is not new. As early as 1963 Wachspress proposed one such preconditioner based on the
ADI method [21]. Recently, in {13} we proposed a number of preconditioners, based on the element-by-
element representation of A for solving Mx + Ax = b. Here M is a diagonal matrix. The steady state
solution of this equation is the same as that of (2).

The first preconditioner uses a Choleski factorization of the element matrices shifted by a diagonal
matrix. We denote the diagonally scaled A by

A=M"3AM-% =) N.a N’ (27)

ex=1

where, n. is the total number of elements. Then the proposed preconditioner can be constructed in the
following manner. First, the Choleski factors €,67 = ol + &, is computed. The shift was applied to
eliminate the singularity of a,. A lower triangular matrix, C is formed as the product of the &,’s. C is an
approximation to the Choleski factorization of A. The resulting preconditioner is given by

Tie 1
B-' = M} [] N.&;'NT [ N.e;”NTmt (28)
e=1 e=n,

Note that the second product is carried out in the reverse order of the first. Numerical results indicated that
a shift ¢ = 1 results in a preconditioner that is close to the optimum.

Writing &, = i@, + @7 +d,, where d, and u, denote the diagonal and strict upper triangular part of a,,
a second preconditioner was constructed as

ne t
B! = M} [IN.(T+d. +a])'NT ] No(T+4. +8)7 "N Mt (29)
e=1 €=,

A comparison of these two preconditioners on small problems indicated that the Choleski form is more
effective.

ExE Choleski:
In [14) Winget replaced the diagonal of @, with the identity matrix to form
ne 1
B-! = M? [ N.&'NT [] N.&;"NTM? (30)
e=1 e=n,

where &.&7 = I+ @, + 07 . This avoids the artificial shifting of a, .

13




ExE LU Split:

Similarly, by dropping d, in (29), a new but simpler preconditioner

n, 1
B =M} [T N1+ a])NT [T N.(T+0, )N M? (31)
e=1 e=n,
can be constructed that eliminates the need for forming Choleski factorization of element matrices. The main
advantage is the reduction in storage since B~ ! v can be evaluated for any v using the element representation
of A. In the next section we compare the two preconditioners defined in (30) and (31) using both Lanczos
and CG methods.

Implementation

We view the computation of the matrix-vector product Au via equation (6) as a mechanism for saving
storage in retum for extra arithmetic work. The reduction in storage demand is due to the following:

1. Inmost practical finite element problems there is a considerable amount of repetition of a given element
in the mesh structure.

2. The element matrices of a number of element types, such as beams, trusses, etc., are known explicitly
and depend on only a few fundamental parameters.

The first observation allows us to create a data structure which keeps the element matrix of one element
to represent a whole group of elements. The second observation results in a canonical form for each element
type, and therefore only a few parameters need be stored to define each element matrix. Hence the storage
requirements for all the distinct a, is often significantly less than the number of words required to hold A,
even when a sophisticated sparse storage scheme is used (see [6]). Furthermore, one can always recompute
the element matrices a, each time the product Au is required.

The overhead for the reduction in storage is the increased number of operations. However, two com-
ments are in order:

1.  The cost of a multiply no longer dominates arithmetic evaluations.
2. Vector and Parallel computers or other special purpose devices can execute 3, (N.a.NT u) very effi-
ciently.

When using the implicit form of Au it can be seen that different elements operate on different parts of
the vector v. One can take advantage of this fact by performing some of the element matrix operations in
parallel. The clements are simply arranged into p groups, where p is the number of available processors.
Each processor then computes the contribution of the product of all the clement matrices in its assigned group
by the corresponding components of v. Finally, the contribution from each group is combined to obtain Au.
The implicit product increases the cost of matrix operations by a factor of, say |, where p depends on the
average number of elements connected to a node. Typically p range between 1.5 and 3 {13], although one
could design examples that result in large j.
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6. Substructure by Substructure Preconditioning

An obvious generalization of the element by element preconditioner described above is the substruc-
ture by substructure (SxS) preconditioner. Here the finite element mesh is partitioned into a number of
substructures (also referred to as sub-domains or super-elements). Each substructure consists of a group
of elements. Associated with each substructure one can define a stiffness matrix. The assembly of the
substructure stiffness matrices results in the global matrix

A=) NgAGNT (32)
S

where As denotes the stiffness matrix for a substructure. This is a generalization of the element by element
preconditioner in the sense that for the special case when each substructure consists of a single element,
equation (32) reduce to (5).

Following a similar approach to the development of Ex E preconditioner we are required to perform
some form of factorization with Ag. It is important to note that any preconditioner obtained from the fac-
torization As will depend on the ordering of the unknowns associated with the parameters in the given
substructure. By adopting a special ordering where the interior nodes for each substructure are numbered
first one can arrive at the hybrid scheme proposed in [23]. Then, the unknowns associated with each sub-
structure can be partitioned as

=[x }
x={3 (33)
where x{ denotes the unknowns in the interior, and x€ denotes the unknowns on the boundary. Here, all

quantities associated with boundary and interior unknowns are denoted with superscripts B and I, respec-
tively. The terms in equation (32) can be expressed as

Ay AP
As = [Agﬂ Agﬂ] (34)
and
Ns=1[0,0...1,0...0, N5 (35)

The first part of N consists of zero blocks except for an identity block corresponding to the interior un-
knowns. The right hand side vector may also be partitioned in a similar manner to obtain

bl
bs = { bé } (36)
With the above ordering the linear system in (2) takes the form
T
[ Al AENET)
All AIPNST | | X b

: : = (37)
v w13 4)

B arBT B arBT BarBT BB xB b
[ NBAIBT NBAIBT | NEAL A
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where APB bP, and xP are related to quantities in equations (33), (34), (35) and (36) through

ARE = 3 NZAZENET
)

b® =) NEp? (38)
S

T
XB = Ng XB

The block arrow structure of the coefficient matrix in (37) is due to the fact that the interior unknowns
in one substructure interact with those in a second substructure only through the boundary unknowns x5
Eliminating the interior unknowns and using the definitions in (38) one obtains the linear system of equations
for the boundary unknows

[Z N?i\fBN‘s’T] x? = Y NZb2 (39)
) )

where b2 = b2 — AIB7 (A7) 'bL and AZZ = AZ5 _ AIBT(AL')' AIB i the Schur complement of
A!! in (34). The main advantage with this approach is that the matrix in (39) has a better condition number
that the original system (see [23] for detail). It is important to note that these quantities can be computed
independently of the other substructures and therefore completely in parallel.

The structure of matrix coefficient in equation (39) is similar to the matrix in (5) in the sense that they
are both constructed using an assembly process. The only difference is that in (39) one is dealing with larger
matrices. This similarity may be used to construct preconditioners for equation (39) in much the same way
as in section 5. However, the difficulty with the product form for the preconditioners defined in section (5) is
the sequential nature of the algorithm. In general, the product form in equations (30) and (31) when applied
to the S xS partition requires the processing of substructure one at a time. This can hinder parallelism when
implemented on a multi-processor computers. Although there are schemes designed to minimize the impact
of the product form on paraliel implementation (through graph coloring algorithms), when the number of
substructures are close to the number of available processors these schemes are not effective.

An altemative preconditioner that is suitable for concurrent implementation can be constructed using
the splitting algorithm proposed in [24-26) for transient finite element analysis. This scheme when applied
to the problem in (1) results in an algorithm that has an additive form and thus lends itself to parallel imple-
mentation. Thus, the new preconditioner takes the form

B-! = [Z NgUEB'TNgT] D [2 NgTUEB"Ng] (31)
) )

where D is diagonal matrices and U2 2 is the lower triangle of A< °. A good choice for D is the diagonal
of the coefficient matrix in (39) obtain by simply assembling the diagonals of f\g B

The steps in evaluating B~ v for a given vector v is similar to those for computing the product pf Ag B
and a vector. First, v is localized to each substructure through N§ v. This is followed by a step of forward
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reduction using the lower part of AZ? . Note that the forward reduction is performed for each substructure
independently of the others. The result is then assembled to obtain a new vector which is then multiplied by
D. A second localization of last result followed by a back-substitution and assembly completes the operation
with the preconditioners.
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7. Numerical Examples

In this section we discuss the results obtained from the application of the Lanczos and CG methods
to two different example problems. The first example is a cavity driven flow problem (Stokes flow). The
incompressibility of the fluid is represented by local volumetric constraints. These constraints are enforced
in each finite element using a penalty method. The penalty parameter represents the bulk modulus of the
fiuid. 400 elements are used to model this problem. See figure 1(a). The condition number of A increases
with the penalty parameter. We refer to this as material ill-conditioning.

The second example we used is a beam in pure bending. Taking advantage of symmetry, a quarter
of the beam is modeled using plane stress elements, see figure 1(b). The beam was analyzed for a range
of different thicknesses while keeping the length constant. This way the element aspect ratio (ratio of the
largest dimension to the smallest) can be varied. Again, the condition of A increases with the aspect ratio.
We refer to this as geometric ill-conditioning. Three different levels of mesh refinement were used to study
the effect of problem size on the algorithms ; 4 x 16, 8 x 32 and 16 x 64.

Lanczos with Partial Reorthogonalization Conjugate Gradients
ExE ExXE ExE ExE
LU Split Choleski Diagonal LU Split |Choleski |Diagonal
Penalty # Reorth. | # Reorth. | # Reorth, # # #
Param. | x |Iter. | Cost* |[Iter | Cost® |[Iter. | Cost Iter. Iter. Iter.
104 106 ]236 | 19445 |228 | 17245 |393 |95424 473 424 792
103 10° 1193 | 11134 |184 | 8900 348 | 60869 277 261 517
10° 10* (117 | 440 110 § 768 247 121393 117 110 252
10! 10° |40 0 39 0 98 708 40 39 98
1 102 |26 0 25 0 60 0 26 25 60

* Unit is one dot product and one SAXPY (vector plus a scalar times a vector).

Table 3. Result of tests using 20x20 mesh. n = 722.

To illustrate the advantages of semi-orthogonality we evaluate the solution for the 4 x 16 beam problem
using the CG method, Lanczos method with full reorthogonalization, and Lanczos with Simon’s scheme for
maintaining semi-orthogonality. In figure 2 we plot the residual norm against the iteration number for each
of the methods. The results for the two implementations of the Lanczos method are indistinguishable. The
residual norm in the CG method starts off the same as that in the Lanczos method, but it deviates quickly

and takes four times as many steps to converge. The difference in the curves for the CG and Lanczos is due
to loss of orthogonality in the CG method.
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We use the 20 x 20 Stokes flow problem to make a direct comparison between three different pre-
conditioners; diagonal scaling, the ExE Choleski defined in (30), and the ExE LU split defined in (31).
We solve this problem for a range of different penalty parameters using both Lanczos and CG methods. A
summary of the results is given in Table 3. Sample plots of the residual norm against the iteration num-
ber are illustrated in Figures 3 and 4. The number of iterations required to obtain the solution using ExE
LU split is marginally more than that using ExE Choleski. On average the cost of reorthogonalization for
ExE Choleski was slightly less. On the other hand, ExE Choleski requires additional storage to keep the
preconditioning matrix. It is interesting to note that the number of reorthogonalizations increases with the
penalty parameter (condition number). This indicates that Simon’s scheme performs reorthogonalizations
when ever it is needed. The number of iterations given in Table 3 are plotted against the penalty parameter;
see Figure 5. One can observe from this plot that maintaining orthogonality can results in reductions of
factors of two in the number of iterations for this example.

Lanczos with Partial Reorthogonalization| Conjugate Gradients

ExE ExE
LU Split Diagonal LU Split |Diagonal
Aspect No. of |Reorth. |No. of | Reorth. No. of |No. of
Problem | Ratio X Iter. Cost* Iter. Cost* Iter. Iter.

1 10* 146 S11 378 17352 182 506
16 x 64 2 2 x 10° [ 199 1208 542 106880 344 1027
n=2142 | 4 3 x10° |329 3261 896 296617 850 2336

8 5x 107 | 586 47667 |1132+ | 811600+ 2714 6000+
40 3 x 1010 | 886 |217883 |[1648+ 1317042+ | 6000+ 6000+

1 2x 102 | 41 146 89 2382 41 96
4 x 16 2 3x10® | 56 196 1m 5625 71 236
n =151 | 4 5x 10* | 87 624 141 13951 191 507

8 7x10% | 114 2312 151 17482 605 1532

40 5x 10% | 150 6461 151 17784 2216 5614

» Unit is one dot product and one SAXPY (vector plus a scalar times a vector).

Table 4. Result of tests using the beam in pure bending. + indicates that CPU time exceeded.

We obtain a similar set of results for the beam example; see Table 4. Both diagonal and ExE LU split
are used to precondition the problem. The solution is evaluated for three different levels of discretization
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using Lanczos and CG methods. Sample plots for the 8 x 32 mesh are illustrated in Figure 6 for thickness
t = 1.0 and in Figure 7 fort = 0.1. Whent = 1.0, CG method required three times as many steps to
converge as the Lanczos method. More crucial is the fact that CG failed to converge after 6000 iterations
when ¢t < 0.5, even for EXE preconditioners. On the other hand Lanczos delivered the solution in less than
300 iterations using E x E preconditioners,

The 16 x 64 beam problem was also analyzed using CG method with S x S preconditionerusingt = 1.0
and t = (.05 corresponding to element aspect ratios 1 and 80, respectively. The mesh is partitioned into 4, *
8, 16, and 32 substructures. All the partition lines were through the thickness of the beam. These partitions
were chosen with equal number of elements in each substructure to illustrate the performance of the Sx S
solution algorithm. The computations were carried out on a hypercube concurrent computer having a total of
32 processors. Each substructure was assigned to a different processor. Thus, when the number of partitions
is 8, only 8 of the processors in the hypercube is utilized. The results for these analysis are given in Table 5.

Beam No. of Solution Elimination | PCG No. of
Thickness |Substructures | Time (Sec.) |Time (Sec.) |Time (Sec.) |Iterations
1.0 4 91 82 9 58
8 53 37 16 95
16 40 14 26 148
32 43 3 40 228
0.05 4 110 82 28 164
8 80 37 43 253
16 68 14 54 308
32 76 3 73 410

Table 5. Result of CG with Sx S Preconditioner for the beam in pure bending.

The elimination of the interior unknows in each substructure was carried out using a direct method
(profile solver). As the mesh is partitioned into more substructures, the number of unknowns in the interior
decreases. For the partitioning scheme used for this problem, the bandwidth of the substructure stiffness
matrix does not change with the number partitions. As a result, the parallel time for eliminating all the
interior degrees of freedom becomes inversely proportional to the number of substructures. Moreover, the
number of bourdary nodes in each substructure remains constant. A direct consequence of this is that the
total number of interface node and thus the number of equations in the reduced system solved by PCG
become directly proportional to the number of substructure. Then the parallel time for each PCG iteration
remains constant. For the SxS preconditioners, the number of PCG iterations depends on the number of
equations and for this choice of partitions, the total paraliel PCG time is proportional to the square root of
the number of processors.
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This example clear indicates that there is an optimum number of processors for a given problems that
minimizes the total solution time (direct + PCG). For the beam problem this minimum occurs for 16 pro-
cessors. This optimum processor number is expected to increase with the problem size.
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8. Conclusions

The conjugate gradient method may be derived directly from the Lanczos algoiithm by performing an
implicit triangular factorization of the resulting reduced tridiagonal matrix. So long as this factorization is
numerically stable the conjugate gradient will also be stable. For symmetric positive definite systems this
factorization is stable. In the case of indefinite equations the success of the conjugate gradient method can
not be guaranteed. However, the Lanczos process will always converge for all symmetric systems.

Partial reorthogonalization improves the robustness of the Lanczos algorithm so that it always con-
verges. However, for ill conditioned system the cost of partial reorthogonalization can be substantial. For
well conditioned problems where there is no tendency towards loss of orthogonality among the Lanczos
vectors, partial reorthogonalization will marginally increase the cost of the Lanczos algorithm. Therefore,
partial reorthogonalization should always be used in conjunction with good preconditioners. It will pick up
the slack for preconditioners. :

The Sx S preconditioner is introduced as an extension of the E x E preconditioner. It is a hybrid method
combining direct elimination of degrees of freedom interior to substructures with iterative solution for the
unknowns on the boundary nodes of substructures. The S x S preconditioners are always more effective than
the Ex E techniques.

22




9. References
[1] C. Lanczos, “An lteration Method for the Solution of the Eigenvalue Problems of Linear Differential
and Integral Operators,” J. Xes. Nat. Bur. Standards, 45 (1950), pp. 255-282.

{2] M. R. Hestenes and E. Siiefel, “Method of Conjugate Gradient for Solving Linear Systems,” J. Res.
Nat. Bur. Standards, 45 (1952), pp. 409-436.

{31 C. Lanczos, “Solution of Systems of Linear Equations by Minimized Iteration,” J. Res. Nat. Bur.
Standards, 49 (1952), pp. 33-53.

[4] R. K. Lively, “The Analysis of Large Structural Systems,” Computer J., 3 (1960), pp. 34-39.

(5] O. C. Zienkiewicz, The Finite Element Method, Third Edition , Mc-Graw Hill, Inc., London, 1977.

(6] A. George and J. W, Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall,
Englewood Cliffs, NJ, 1981. _

[71 J. K.Reid, “On the Method of Conjugate Gradients for the Solution of Large Sparse Systems of Linear
Equations” in Large Sparse Sets of Linear Equations, Academic Press, New York, 1971, pp. 231-254.

{8] R.L.Fox and E. L. Stanton, “Developments in Structured Analysis by Direct Energy Minimization,”
AlAA Journal, 6 (1968), pp. 1036-1042.

[9] I Fried, “More on Gradient Iterative Methods in Finite-Element Analysis,” AIAA Journal, 7 (1969),
pp. 565-567.

(10] T. J. R. Hughes, I. Levit and J. Winget, “Implicit, Unconditionally Stable Algorithms for Heat Conduc-
tion Analysis,” ASCE, Journal of the Engineering Mechanics Division, 109 (1983), pp. 576-585.
(11] M. Ortiz, P. M. Pinsky and R. L. Taylor, “Unconditionally Stable Element-by-Element algorithm for

Dynamic Problems,” Computer Methods in Applied Mechanics and Engineering, 36 (1983), pp. 223-
239.

[12] T. J. R. Hughes, 1. Levit and J. Winget, “An Element-by-Element Solution Algorithms for Problems
of Structural and Solid Mechanics,” Computer Methods in Applied Mechanics and Engineering, 36
(1983), pp. 241-254.

{13] B. Nour-Omid and B. N. Parlett, “Element Preconditioning Using Splitting Techniques,” SIAM J. Sci.
Stat. Comput., 6 (1985), pp. 761-770.

[14] J. M. Winget and T. J. R. Hughes, “Solution Algorithms for Nonlinear Transient Heat Conduction
Analysis Employing Elen.ent-by-Element Iterative Strategies, Computer Methods in Applied Mechan-
ics and Engineering, 52 (1985), pp. 711-815.

[15]) D. S. Kershaw, “The Incomplete Choleski-Conjugate Gradient Method for Solution of System of Linear
Equations,” Journal of Computational Physics, 26 (1978), pp. 43-65.

(16] H. D. Simon, “The Lanczos Algorithm with Partial Reorthogonalization,” Mathematics of Computa-
tion, 42 (1984), pp. 115-142.

23




(17] B. N. Parlett, "A New Look at the Lanczos Algorithm for Solving Symmetric Systems of Linear Equa-
tions,” Linear Algebraic Applications, Vol. 29, pp. 323-346, 1980.

(18] G. H. Goluband C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore,
1983.

{19] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1980.

[20] B. Nour-Omid, “A Preconditioned Conjugate Gradient Method for Solution of Finite Element Equa-
tions,” Innovative Methods for Nonlinear Problems, ASME, New Orleans, Dec. 1984.

[21] E. L. Wachspress, “Extended Application of Altemating Direction Implicit Iteration Model Problem
Theory,” J. Soc. Industr. Appl. Math., 11 (1963), pp. 994-1016.

{22] A. R. Gourlay, “Splitting Methods for Time Dependent Partial C. ferential Equations”, in The State of
the Art in Numerical Analysis, ed. by D. Jacobs, Academic Press, 1977.

{23} M. R. Li, B. Nour-Omid, and B. N. Parlett, ‘A Fast Solver Free of Fill-In for Finite Element Problems,”
SIAM J. Numer. Anal., Vol. 19, No. 6, Dec. 1982, pp. 1233-1242,

[24] M. Ortiz, and B. Nour-Omid, “Unconditionally Stable Concurrent Procedures for Transient Finite El-
ement Analysis,” Computer Methods in Applied Mechanics and Engineering, Vol. 58, pp. 151-174,
1986.

[25] M. Ortiz, B. Nour-Omid, and E. D. Sotolino, *“Accuracy of a Class of Concurrent Algorithms for Tran-
sient Finite Element Analysis,” International Journal for Numerical Methods in Engineering, Vol. 26,
pp. 379-391, 1988.

(26] B. Nour-Omid, and M. Ortiz, “A Family of Concurrent Algorithm for Transient Finite Element Analy-
sis,” Proceedings of the ASCE Structures Congress on Parallel Processing and Computational Strate-
gies in Structurol Engineering, May 1989.

[27] B. Nour-Omid, A. Raefsky and G. Lyenga, “Solving Finite Element Equations on Concurrent Com-
puters,” Parallel Computations and their Impact on Mechanics, A. Noor (ed.) ASME, Boston, Dec.
13-18 1987.

(28] B. Nour-Omid, and K. C. Park, “Solving Structural Mechanics Problems on the Caltech Hypercube
Machine,” Computer Methods in Applied Mechanics and Engineering, Vol. 61, pp. 161-176, 1987.

24




C)

(®)

-+ - - . - - G - o -

*Surpuaq 2und ur wreaq

ap 10} yssw p9x91 (qQ)

*ANaed © Ul moy
ping  o[qissasdwoout
sy 3oy ysow (x0T (®)
"1 andig




‘Suruonipuosaid feuoSerp pue (01 = 7 Ylim weadq
9] X$ ‘SUOIRIIN JO JIqWINU Y} UO UOHRZI[BUOSOYLIOAI JO 199)j T 2In3i4

SUOIyDIB)}| JO JaqUUNN

08¢
J

o1
i

ovi
i

0£9 095 06v  OT¥
1 __ ! L

0S¢
|

uaipp. ajobniuoy

Y4408y “§4Dd Y}iM SOZOUD

"YHO 1IN4 Y}iM SOZoUDT

puaba

| UoIONpPaYy

IS8y 8y} u

WLION [PNp




*01 Jo 3o1oweted Ajjeuad yim ysow

027 %0 10 sdais sozoue ] Jo Joquinu oY) uo Sutuonipuodaidjo1odyy ‘¢ aIn3ig
suoibis}| JOo JBqUUNN
801 96 8 L 09 8y 9¢ Zl 0
| | | | ] I ! ! = 0Ol
: : : : : : . L=

T

I

1]

I

IR

LRI

T

I

1

jpuoboiq

-{ PS80y 3x3

wds M 3Ix3

puaba

WION [DNPIS8Y 3y} Ul uoljonpay




*,0T jo Jorowered fjjeuad yim ysow
07 x0T Y1 Suisn s1ouonipuodaid gxH WaleyIp jo uosuedwo) ¢ aIn3ig

SUOIDIBY| JO JaqUUNN
oSy 00¥ 0S§ 00§ 0SZ 002 OSl  0OL  OS 0
] ] | 1 ) L

i L

sy ‘99
#ids M '9D
1 Msajoy) ‘sozounT

Hids M ‘sozouo

IS8y By} Ul uolonpay

LWION [PNP




pue sozoue-T uo sansadold Juswsals o1 anp Juruonipuody(t jo 1999

"(ysaw Oz XQ7) spowauwt D)
*G AIn31]

Jajpwinipg Ajpusd

00001 oool 00l Ol I
O T U T T 1 W O | 1 | O U WY S T | I O N A | _0.0
\\ct\\t .............
g T .
\\\n ~0°0Z1
\\\ \\\
....... \\.W\ \ ot“‘
g = e L ooz
A - 0'09¢
07 \
o \
y\ .\\ _v_mw_Or_Ouxm.OU ......... > | oosy
\\ﬂ _v_mO_OLUmxu.MONOCUJ ......... o
\ TR E RS
; _ M .3._ 399 - 0'009
jids N1 3x3 ‘'sozoup]  +
T T puoboig gy v
ST puoboig ‘sozouo] o | |[F0°0ZL
v pusba
~- 0°0ve

abuaauoy o} suoypiay) jo “oN




09dl
L

"t = ones 10adse AW {0 T = 7 YPIM wojqoid wreaq gg Xg "9 N3y

SUOIYDIB)| JO JBGUUNN
oZlL 086 Ov8 00L 095 OZv 08 OW O
| L | L S

L

HIAS N7 3X3 ‘sozoup]
: jpuobpiq ‘sozoup

Hids N1 3X3 ‘90

[ouoboig ‘90

puaba

LLLION [ONPIS8Yy 8y} Ul uoijonpay




‘O = oner1oadse Juawdle {1°) = 7 YPim wojqord weaq zexg  °z a3y

suolyDIBY| JO JaqUUNN
00/Z 00¥Z 00lZ 008F 00Sk 00Z 006 009  0O%
! L L | ] | ] | J

DR T o O S N R T R R B LT R T R R

1

jouoboig ‘93  x | -
pdsmaxaod -+ |
| 4ids 07 3x3 ‘sozoupy o
1 jpuoboig ‘sozouo] o

puaba

.........................................................................................

.......................................................................................................................

.....................................................................................................................................

LLION [DNPIS3Y 8y} Ul Uoijonpay




_——

] L}

‘wajqold weaq oy} Joj spoyrowr H))

pue SO0ZdUe"] UO JUSWAUYDI Yysaw 0] Inp SutuonIpuody[i Jo 103}y ‘g i

SjusWIa[g JO JaquunN

OOl O00L 006 008 O00L 009 O00S OO¥ O00L 00 OO 0
1 L | | | 1 1 _ 1 [

............. R
........................... T
........................ T
+- \.\0\\.\\
\.\“”\-.‘u\|||.v4
\.\.\\.\R.\-\\ \q
O
||q4¥;\4\4\\\\|\\\\ \
x-\\......\\“...\\ \
e \
rd
~
~
~
~
~
\.\
~ HdS N1 3x3‘90  x
\_\ pids N7 Ix3 ‘sozouo
- ~ jpuoboig‘9) v
~ _ uoboIg "0
-~ puobpig ‘sozoub]| o
~
v puaban

00

— 0°00S

- 00001

- 0°00st

- 00002

0°00S¢

abiaAuo)) o} suoipsy| JO "ON




"weaq 91 X ‘spoylow ) pue

S0ZoueT uo onex 19adse JUAWS[S 01 9np SUIUONIPUOD[[ JO 13T 6 N1y

oDy Joadsy juswis|3

ol
{ | i | J S 1 1
T‘iii’rﬂ-‘“ ||||||||||||||||||| g By e S s raa——
—T et
v4\\.\ w--oT 0T
e .\\
- P
\\ \Q\\
~ \\
|~ o
HAS M 3IX3 ‘90
pids N 3x3 ‘sozouo] .
T  puoboig ‘9 v
" “jpuocboig ‘sozoupq o
pusban

- 0006

- 0°008I

- 00042

— 0°009¢

- 0'00vS

- 0°'00¢9

- 0°00SY

abJaAUO) O} SUOlD.IB)| JO ON




"Wweaq 9 X9[ ‘Spoylew H)) pue
$0ZOue] uo ones 3oadse WIWIS 03 anp SurUONIPUOD][I JO 103y Q] AnSig
0110y +omn_m< juswialj
m— _ |
I 1 S W I il i I | I o-o
1||\|\|\4\\\\\ .\\w“\o.-:--n---\-.\\\
o — . o g - 0°006
e--"""" \ ‘
\ - 0°0081
/
s
—0°00L2
7 .
7 ,\
: \ - 0°009¢
v
/ ;= E—
V4 ; HOSM3X3 x| | 0"00SY
/! jids M 3x3 ‘sozouo
s T pueboig 9 Y
\.\ ; " jpuoboiq ‘sozouo| o | | 000¥S
e & puabai

0°00¢9

ab.uaAu0)) 0} suoiDIB}| JO ‘ON




01 =1

"11 231

YIM wedq 49 X971 -1nduwiod Juannouod aqnasadLy e uo HOHJ S XS
SHOSS3IOOHd 40 'ON
oy 0¢ 0¢ ol 0
. | —dh A Py A A °
3
- 0
s
- O
-~ o}
! ]
c
- 09 m
3NIL V101 = - 08
WHLHOOTY9Od - .
NOILYNININGE @
001




S00=1
PIM Uresq $9x971 ‘1anduwiod Juaunouod aqnarddLy e uo nHJ S XS 71 sy

SHOSS3J0Hd 40 'ON

oy o€ oc ol 0
Y A Y ol A ' A °
i
- 0
[
- OF
2]
f O
c
- 8 -
i
- 08
3
INILWVIOL = ool
WHLHOD TV OOd -o-
NOILVNINITT o
oci




DISTRIBUTION LIST

ADINA ENGRG, INC / WALCZAK, WATERTOWN, MA

AFOSR / NA (WU), WASHINGTON, DC
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DISTRIBUTION QUESTIONNAIRE
The Naval Civil Engineering Laboratory is revising its primary distribution lists.

SUBJECT CATEGORIES

SHORE FACILITIES

Construction methods and materiais (including corrosion
control, coatings)

Waterfront structures (maintenance/deterioration control)

Utilities (including power conditioning)

Explosives safety

Aviation Engineering Test Facilities

Fire prevention and control

Antenna technology

Structural analysis and design (including numerical and
computer techniques)

Protective construction (including hardened shetters, shock
and vibration studies)

Soilrock mechanics

Airfields and pavements

Physical security

ADVANCED BASE AND AMPHIBIOUS FACILITIES

Base facilities (including shelters, power generation, water
supplies)

Expedient roads/airfields/bridges

Over-the-beach operations (including breakwaters, wave
forces)

POL storage, transfer, and distribution

Polar engineering

ENERGY/POWER GENERATION

Thermal conservation (thermal engineering of buildings,
HVAC systems, energy loss measurement, power
generation)

Controls and electrical conservation (electrical systems,
energy monitoring and control systems)

Fuel flexibility (liquid fuels, coal utilization, energy from solid
waste)

TYPES OF DOCUMENTS
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BECHRAE665"S

Alternate energy source (geothermal power, photovoltaic
power systems, solar systems, wind systems, energy
storage systems)

She data and systems integration (energy resource data,
integrating energy systems)

EMCS design

ENVIRONMENTAL PROTECTION

Solid waste management

Hazardous/toxic materials management

Waterwaste management and sanitary engineering

Oll poliution removal and recovery

Al poliution

Noise abatement

OCEAN ENGINEERING

Seafioor soils and foundations

Seatloor construction systems and operations (inciuding
diver and manipulator tools)

Undersea structures and materials

Anchors and moorings

Undersea power systems, electromechanical cables, and
connectors

Pressure vessel facilities

Physical environment (including site surveying)

Ocean-based concrete structures

Hyperbaric chambers

Undersea cable dynamics

ARMY FEAP

BDG Shore Facilities

NRG Energy

ENV Environmental/Natural Responses
MGT Management

PRR Pavements/Raiiroads

D = Techdata Sheets; R = Technical Reports and Technical Notes; G = NCEL Guides and Abstracts; 1 = Index to TDS: U = User
Guides; [J None - remove my name

Oid Address:

Telephone No.:

New Address:

Telephone No.:




INSTRUCTIONS

The Navai Civil Engineering Laboratory has revised its primary distribution lists. To help us verify
our records and update our data base, please do the following:

Add - circle number on list
Remove my name from all your lists - check box on fist.
Change my address - add telephone number

Number of copies should be entered after the titie of the subject categories
you select.

Are we sending you the correct type of document? It not, circle the type(s) of
document(s) you want to receive listed on the back of this card.

Fold on line, staple, and drop in mail.
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COMMANDING OFFICER
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NCEL DOCUMENT EVALUATION

You are number one with us; how do we rate with you?
We at NCEL want to provide you our customer the best possible reports but we need your help. Therefore, | ask you
to please take the time from your busy schedule to fill out this questionnaire. Your response will assist us in providing

the best reports possible for our users. | wish to thank you in advance for your assistance. | assure you that the
information you provide will help us to be more responsive to your future needs.

/%édfﬁm—v

R. N. STORER, Pb.D, P.E.

Technical Director
DOCUMENT NO. TITLE OF DOCUMENT:
Date: Respondent Organization :
Name: Activity Code:
Phone: Grade/Rank:
Category (please check):
Spoasor User Proponent Other (Szecify)

Please answer on your behalf only; not on your organization's. Please check (use an X) only the block that most closely
describes your attitude or feeling toward that statement:

SA Strongly Agree A Agree O Neutral D Disagree SD Strongly Disagree

SAANDSD SAANDSD
1. The technical quality of the report () () () () ()]6. Tbeconclusions and recommenda- () () () () ()
is comparable to most of my other tions are clear and directly sup-
sources of technical information. ported by the contents of the
report.
2. The report will make significant OO0
improvements in the cost and or 7. The graphics, tables, and photo- OOOOO
performance of my operation. graphs are well done.
3. The report acknowledges related OO0000
work accomplished by others. Do you wish to continue getting S R A |
NCEL reports? YES NO
4. The report is well formatted. O0O000

. ) Please add any comments (¢.g., in what ways can we
5. ‘The report is clearly written. ) O O O O | improve the quality of our reports?) oa the back of this
form.
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